Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Biol Macromol ; 226: 780-792, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2246439

ABSTRACT

Targeting the interaction between the spike protein receptor binding domain (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2) is a potential therapeutic strategy for treating coronavirus disease 2019 (COVID-19). However, we still lack small-molecule drug candidates for this target due to the missing knowledge in the hot spots for the protein-protein interaction. Here, we used NanoBiT technology to identify three Ginkgolic acids from an in-house traditional Chinese medicine (TCM) library, and they interfere with the S-RBD/ACE2 interplay. Our pseudovirus assay showed that one of the compounds, Ginkgolic acid C17:1 (GA171), significantly inhibits the entry of original SARS-CoV-2 and its variants into the ACE2-overexpressed HEK293T cells. We investigated and proposed the binding sites of GA171 on S-RBD by combining molecular docking and molecular dynamics simulations. Site-directed mutagenesis and surface plasmon resonance revealed that GA171 specifically binds to the pocket near R403 and Y505, critical residues of S-RBD for S-RBD interacting with ACE2. Thus, we provide structural insights into developing new small-molecule inhibitors and vaccines against the proposed S-RBD binding site.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , HEK293 Cells , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/genetics , Molecular Dynamics Simulation , Protein Binding
2.
Bioorg Chem ; 130: 106264, 2023 01.
Article in English | MEDLINE | ID: covidwho-2104424

ABSTRACT

Although the effective drugs or vaccines have been developed to prevent the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), their efficacy may be limited for the viral evolution and immune escape. Thus, it is urgently needed to develop the novel broad-spectrum antiviral agents to control the coronavirus disease 2019 (COVID-19) global pandemic. The 3C-like protease (3CLpro) is a highly conserved cysteine proteinase that plays a pivotal role in processing the viral polyprotein to create non-structural proteins (nsps) for replication and transcription of SARS-CoV-2, making it an attractive antiviral target for developing broad-spectrum antiviral agents against SARS-CoV-2. In this study, we identified Thonzonium bromide as an inhibitor of SARS-CoV-2 3CLpro with an IC50 value of 2.04 ± 0.25 µM by fluorescence resonance energy transfer (FRET)-based enzymatic inhibition assay from the FDA-approved drug library. Next, we determined the inhibitory activity of Thonzonium bromide analogues against SARS-CoV-2 3CLpro and analyzed their structure-activity relationship (SAR). Interestingly, Thonzonium bromide showed better inhibitory activity than other analogues. Further fluorescence quenching assay, enzyme kinetics analysis, circular dichroism (CD) analysis and molecular docking studies showed that Thonzonium bromide inhibited SARS-CoV-2 3CLpro activity by firmly occupying the catalytic site and inducing conformational changes of the protease. In addition, Thonzonium bromide didn't exhibit inhibitory activity on human chymotrypsin C (CTRC) and Dipeptidyl peptidase IV (DPP-IV), indicating that it had a certain selectivity. Finally, we measured the inhibitory activities of Thonzonium bromide against 3CLpro of SARS-CoV, MERS-CoV and HCoV-229E and found that it had the broad-spectrum inhibitory activity against the proteases of human coronaviruses. These results provide the possible mechanism of action of Thonzonium bromide, highlighting its potential efficacy against multiple human coronaviruses.


Subject(s)
COVID-19 Drug Treatment , Pyrimidines , Quaternary Ammonium Compounds , SARS-CoV-2 , Viral Protease Inhibitors , Humans , Antiviral Agents/pharmacology , Endopeptidases , Molecular Docking Simulation , Peptide Hydrolases/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , Quaternary Ammonium Compounds/pharmacology , Pyrimidines/pharmacology , Viral Protease Inhibitors/pharmacology
3.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1305238

ABSTRACT

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Vitamin K 3 , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL